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ABSTRACT
Predicting promising academic papers is useful for a variety
of parties, including researchers, universities, scientific coun-
cils, and policymakers. Researchers may benefit from such
data to narrow down their reading list and focus on what will
be important, and policymakers may use predictions to in-
fer rising fields for a more strategic distribution of resources.
This paper proposes a novel technique to predict a paper’s
future impact (i.e., number of citations) by using temporal
and topological features derived from citation networks. We
use a behavioral modeling approach in which the temporal
change in the number of citations a paper gets is clustered,
and new papers are evaluated accordingly. Then, within
each cluster, we model the impact prediction as a regression
problem where the objective is to predict the number of ci-
tations that a paper will get in the near or far future, given
the early citation performance of the paper. The results of
empirical evaluations on data from several well-known cita-
tion databases show that the proposed framework performs
significantly better than the state of the art approaches.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Information Networks;
H.3.7 [Digital Libraries]: Dissemination; I.2.6. [Learning];
I.5.3 [Clustering]

General Terms
Algorithms; Design; Experimentation; Verification.

Keywords
Citation count prediction; clustering; time series; regression;
network analysis.
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1. INTRODUCTION
In today’s academia, publish or perish policy results in

an enormous body of publications. Hence, given the limited
time, researchers have to be selective while putting a paper
into their reading list, as well as prioritizing the articles in
that list. Ideally, many would be more interested in reading
papers that are likely to have high impact in their fields so
that they can get ahead of their peers in contributing to an
emerging field, and possibly become a leading figure in that
area. However, it is almost impossible to decide whether a
paper would really make a high impact ahead of time be-
fore reading it (even after reading it, it would be challeng-
ing to mark such papers). In order to tackle with reading
list building and prioritization challenge, researchers prac-
tice some implicit rough filters, such as following top publi-
cation venues and prominent researchers constantly in their
field. The implicit assumption is that high impact papers
would be published in top venues and/or by prominent re-
searchers. This assumption holds true in many cases, but
even with such rough filters, the number of candidate pa-
pers to read may still be in the order of hundreds (if not in
thousands) per year.

In addition, for policy makers and funding agencies, it
may be essential to determine which papers will gain more
attention. This is because such information may help them
foresee which fields are more likely to be important in the
future so that they can allocate resources more strategically.
A direct approach for determining the future impact of a pa-
per or field is to use expert knowledge. However, this is time
consuming and human effort is not scalable to keep up with
the current rate of academic production. Also, this method
involves personal opinions of experts which may be subjec-
tive and prone to differ significantly. In addition, expert
opinions are shown to be fallible for numerous times, as it is
difficult to estimate the future impact of a paper just based
on its content. One example of this is on the use of Neural
Networks [16] for machine learning problems. In early 80s,
Neural Networks were very popular in the field of machine
learning, until they were replaced by linear classifiers, such
as Support Vector Machines [23]. Until the popularity of the
Neural Networks diminished, it may be highly likely that an
expert would underrate the development in linear classifiers.
Thus, the evaluation would be biased.

Hence, there is a need for automated tools that can accu-
rately predict high impact papers (and, indirectly, the corre-
sponding future hot research fields) shortly after their pub-
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Figure 1: Citation behaviors of three papers extracted from Arxiv HEP-TH dataset

lication. In this paper, we propose an impact prediction
framework for academic papers in which we model the be-
havior of the papers in terms of their citation performance
during their initial lifetime. Given the citation behavior of
a paper in the first few years after it gets published, our
model assigns the paper to a cluster, hence captures its cita-
tion behavior. Our model then uses the paper’s topological
properties (such as various centrality measures within the
citation network) to improve the prediction accuracy. The
main novelty of our approach is the use of behavioral models
that are defined by clustering the citation time series of the
papers to analyze their citation patterns.

Measuring the impact of a publication is usually done in
an appeal to popularity fashion, in which the number of cita-
tions a paper gets is used to quantify the attention that the
paper gets; hence, the impact of the paper in the academic
world [21]. In spite of the studies that point out the problems
of the citation-based analysis of impact [13], the number of
citations has been widely used as a measure of impact of
publications or scientists [7, 9]. Hence, the impact of a pa-
per in our approach is also based on the number of citations
that a paper already got or will get. Previous research [2]
shows that the number of citations in the initial years after
the publication of a paper is a good indicator of that paper’s
citation performance in the long term. Hence, citation per-
formance of a paper during its early life-time is a promising
feature, and has been employed previously [14,17]. However,
none of the previous research has focused on a paper’s cita-
tion behavior which captures the patterns in citation count
changes of a paper. More specifically, the citation behavior
of a paper tells about whether the number of citations in-
creases steadily, or it saturates after some time, or whether
the paper seems to get no citations at all at the beginning,
and its citation count explodes later, and so on. Figure
1 shows three different types of citation patterns, where x
axis represents the time and y axis represents the cumulative
number of citations. In Figure 1a, the number of citations
forms a straight line, since the number of citations over time
does not increase, and the paper ends up having zero cita-
tions at the end of the analysis period. Figures 1b and 1c
show a more steady increase, followed by a saturation pe-
riod. The difference between Figures 1b and 1c is in terms
of the scale of the graph, i.e., the number of citations that
the papers get at the end of the analysis period: the paper
in Figure 1b ends up having around 85 citations, while the
paper in Figure 1c gets around 230 citations. These three
patterns indicate two important parameters about the cita-

tion behavior of a paper: (i) the scale, which corresponds
to the number of citations, and (ii) the temporal change
with respect to the number of citations. While considering
the current citation behavior of a paper, one may take into
account these two parameters.

It is relatively straightforward to employ the number of ci-
tations as a predictor of future importance, when the prob-
lem is considered as a regression task. However, it is not
as intuitive to incorporate the citation behavior into such
a regression-based prediction scheme. For this problem, we
propose to cluster papers based on their citation behaviors
(i.e., change of the number of citations over time), and as-
sign a polynomial to each cluster for regression. Given a new
paper, we assign the paper to a cluster by using its citation
behavior in the initial stages after its publication, and per-
form citation prediction based on the polynomial associated
with the paper’s cluster.

In addition to the temporal citation patterns, topological
properties of papers in the citation network are shown to be
helpful in predicting future importance of a paper [17, 21].
Hence, we also use topological properties of a paper, such as
betweenness centrality, closeness centrality, PageRank, and
eigenvector centrality in the citation network for improving
prediction performance of our model.

Experiments in two well-known datasets reveal that our
model outperforms the state of the art by a significant mar-
gin. Also, we show that using behavioral models, rather than
considering all papers to have the same citation behavior
improves the prediction performance significantly. We also
provide several sensitivity analyses on the parameters we use
in our model.

Contributions. Our contributions in this paper are as
follows:

• Clustering papers during the initial stage based on
their citation behaviors.

• Creation of regression models specific to each citation
behavior.

• Improvement of the prediction based on the distribu-
tion of topological measures.

• Experimental evaluation of the proposed scheme on
real data from several citation databases.

Organization. The rest of the paper is organized as fol-
lows: In Section 2, we review the related work, and present
the features and models that have been used for predicting

492



a paper’s importance. Then, in Section 3, we present the
proposed scheme. We also present a complexity analysis in
this section. In Section 4, various experiments that we per-
formed will be presented to validate the proposed scheme.
Several parameter sweeps will also be presented. Then, in
Section 5, we conclude by summing up the overall findings
and giving insights about future work.

2. RELATED WORK
Impact prediction for academic papers has been an active

research area. Most of the literature uses features that are
extracted from graph structure [21, 24]. [2] states the im-
portance of the citations in the initial years after the publi-
cation of a paper, hence it is commonly used [5, 14, 17]. [3]
models citation behaviors of researchers in computer science,
and defines two publication popularity phases, namely, the
population growth phase and the population decay phase.
However, none of the papers mentioned here uses clustering
in terms of citation behavior to have a better prediction.
In our model, we exploit the differences between the cita-
tion behavior of papers, and cluster similar papers together
for training regression models for each cluster, rather than
training a single regression model for all papers.

In addition to number of citations, measures of network
centrality, such as clustering coefficient, average shortest
path length, and betweenness centrality are used [21]. The
idea in [21] is that there is a pattern of topological features
between the papers that get high number of citations. For
testing their hypothesis, they analyzed the correlation be-
tween the number of citations in the future and the topolog-
ical measures stated above. Similar to these work, our model
uses topological features. However, the way our model uses
topological features is to use it as a means of improvement,
rather than using it as the main component used for predic-
tion. Various topological features are also studied in [20].

In addition to temporal and topological features described
above, a variety of contextual features are used. A reason-
able indicator of a paper’s impact is the previous works of
the paper’s authors. People in academia tend to cite papers
that are published by celebrities, i.e., people who are well-
known in these fields. Hence, an author with high number
of citations is more likely to get citations in his/her follow-
ing papers. This phenomenon was taken into account in [5].
Some other works consider the content of the paper. [24]
uses contextual features, in addition to a large pool of other
features, to predict for citation number prediction in Arnet-
Miner dataset. [25] uses metadata information of papers, and
they found out that text features significantly improve the
prediction performance, compared to the baseline methods.

Models that are employed for the impact prediction prob-
lem are also worth mentioning. One approach is to consider
citations in an information diffusion context, in which cita-
tions are spread like a disease. Preferential attachment [4]
is another model that is used to study the problem, espe-
cially in the context of link prediction [12]. The concept of
preferential attachment suggests that new nodes favor con-
nections to existing nodes that are highly connected. There
exist other models proposed for multidisciplinary networks
that are based on structural holes, but these are outside the
scope of our study.

The next section is devoted to the explanation of our pro-
posed method.

3. METHODOLOGY
In this section, we present the temporal and topological

features that are used to analyze the paper’s current situ-
ation, and how these features are employed to predict the
future characteristic of the paper. Then we present the re-
gression model that performs the prediction, based on the
extracted features.

3.1 Problem Description
Given paper’s time series of citation counts and topolog-

ical features; predict citation count in future. Formally we
can define this problem as below.

Let G be directed citation graph of papers. Where nodes
are papers and edges p→ q means p cites q

Let p be the paper that we want to predict citation count.
Let Cp

t be citation count time series of a paper p where
t=0,1,2,3,...

Let F p be the topological feature set of a paper p where
F p = {fp

1 , f
p
2 , f

p
3 , f

p
4 , ...}. An example of features might

be fp
1 = PageRank(p,G), fp

2 = Closeness(p,G) and fp
3 =

Eigenvector(p,G).
Predict citation count ct∗ given (Cp

t , F
p, t∗) where t∗ is

time in future.

3.2 Time Series Classification
We consider the citation pattern of each paper as a time

series, and investigate the relationship among different time
series. We do this by defining paper types in the context of
incoming citation performance. We first create snapshots of
the network with a constant interval determined by consid-
ering the properties of the dataset, and in each snapshot, we
compute the number of citations for each paper for six years
after the publication of paper for training purposes. Then,
we construct a distance matrix D between all the papers
that are used in the training, which is defined as follows:

Dij =

√√√√ n∑
k=1

(Xk
i −Xk

j )2, (1)

where Xi and Xj are citation time series for paper i and
paper j, and k is the snapshot id starting from the publi-
cation of the paper. Here, the sizes of both time series are
assumed to be the same, hence Euclidean distance [10] alone
is used for computing the overall distance. However, it may
not be the case in real life scenarios: for each paper, there
exist a time interval where it has no citations, since the pa-
pers that cite a paper will go through a peer-review process
which usually takes months, if not years. Hence, one might
want to consider the citation behavior only after the first
citation (if exists) by considering the related timespan. To
this end, one may extend the scheme above by employing
Dynamic-Time Warping (DTW) [19]. DTW can be used to
compare time series that vary in time. Hence, using DTW
makes it possible to compare papers even their citation be-
havior has differences caused by different peer-review lengths
among the papers that cite each paper.

After D matrix is calculated, we apply spectral cluster-
ing [18] to determine citation models. Spectral clustering
involves the application of eigen decomposition over the dis-
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Figure 3: RMSE vs λ

tance (or similarity) matrix. The resulting eigenvectors are
considered as cluster labels. We expect the citation behav-
iors to act as an indicator of citations in the future, given its
citation performance in the first few( usually two or three in
practice) years after the publication.

One important aspect that needs to be determined is the
number of clusters, each of which correspond to a differ-
ent behavioral model. If less number of clusters is used,
the model results in underfitting, coming short in correctly
modeling the citation behavior. On the other hand, having
too many clusters is likely to overfit, which is another source
of error. There are several options available for determining
the number of clusters in given data. A rule of thumb is
to use

√
n
2

as the number of clusters, where n is the num-
ber of data points [15]. There also exist different types of
predictions that are based on the rate of change in cost func-
tion (i.e., the elbow method), or information criterion. The
idea in our model is to choose the number of clusters that
minimizes the prediction error in our training dataset.

Figure 2 shows two of the clusters when the number of
clusters are equal to 5. In each subfigure, the upper plot
corresponds to individual citation behaviors, while the mid-
dle plot corresponds to the average of the cluster, and the
bottom plot is the predicted polynomial for that cluster.

Note that the normalization plays an important role in
the preprocessing stage prior to clustering, since our goal
in the clustering is to capture the behavior, rather than to
record the number of citations. We perform normalization
by dividing the number of citations in each instant by the
number of citations after time used for clustering; hence,
the last element of a normalized sequence always becomes
1. The numbers of citations at the end of the timespan used
for clustering are kept separate from the behavior, and used
during the prediction stage.

When a new paper arrives, the paper is assigned to the
cluster that minimizes the distance between its mean ci-
tation behavior of the cluster and the paper’s normalized
citation behavior, that is:

ci = arg min
j
‖Xi − µj‖. (2)

3.3 Topological Features
In addition to the clustering scheme that is described in

the previous section, it is possible to use topological fea-
tures as improvement terms. In this context, improvement
is used to introducing information obtained from the topo-
logical properties of a paper with the intend of improving
prediction accuracy. We either increase or decrease the pre-
dicted citations by a sum of topological features.

The way that we employ topological features is as follows:
We first calculate topological features, such as betweenness
centrality, closeness centrality, PageRank, and eigenvector
centrality, and create a f i vector out of these features. Af-
ter f i vector is calculated for each paper, we calculate the
following score for each feature:

αi
j =

f i
j − µj

σj
, (3)

where µj is the mean and σj is the standard deviation
of training samples for jth feature, and αi

j is the multiplier
of ith test sample for jthe feature. Normalizing the fea-
tures with respect to the distribution of these features along
the training samples makes it possible for us to approach
the problem in an anomaly detection sense. The anoma-
lous samples, i.e., the samples that deviate more from the
mean, are considered as advantageous features in terms of
topology. The sum of these values are then multiplied with
a carefully tuned λ parameter to improve citation predic-
tions. The tuning is performed based on the change in the
prediction error in the training data(see Figure 3).

feature name formula

Betweenness centrality
∑

i6=j 6=k

totalShortestPathjk(i)

totalShortestPath(i)

Closeness centrality closeness(i) =
∑

i6=j

1

dij

PageRank PR(i) =
1− d
N

+ d
∑

j∈L(i)

PR(j)

L(j)

Eigenvector centrality eigen(i) =
1

λ

∑
j∈M(i) eigen(j)

Table 1: List of features and formulas

3.4 Prediction
As discussed in the above sections, the evaluation of a

paper is twofold: (i)a paper is first assigned to a cluster, and
then (ii)the topological features are computed for the paper.
The way we combine these two is as follows: Given a paper
for which the prediction is to be performed, we first compare
the citation behavior of the paper for a short timespan (e.g.,
2-3 years) with mean citation behavior of all clusters. As
in Equation 2, the cluster that minimizes the distance is
chosen as the cluster of the paper. Then, for the rest of the
prediction timeline, the chosen cluster’s polynomial is used
for prediction (polynomial regression). Since the polynomial
for each cluster is determined based on normalized citations,
it only captures the behavior, and it should be amplified with
the number of citations the paper has after the first window.
Then, we introduce the effect of topological features, which
we use as improvement terms. We use a carefully-tuned λ
parameter to adjust the effect of α values on prediction. The
resulting prediction, y′, is calculated as follows:
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(a) (b)

Figure 2: Two of the clusters when the number of clusters is 5. Note that in each subfigure, (i) corresponds to individual
citation behavior, while (ii) corresponds to the average of the cluster, and (iii) is the predicted polynomial for that cluster.
The plots are based on citation data from Arxiv HEP-TH dataset

y′i = yi + λ
∑
j

αi
j , (4)

where yi is the initial prediction without topological fea-
tures. The λ value may be tailored for each feature, or may
be global, which results in equal weighing of topological fea-
tures. We used it as a global since all features are equally
important.

3.5 Running Time Complexity
If the algebraic solution is used for spectral clustering, it

requires computing the eigenvectors, which is O(n3), where
n is the number of papers to be clustered, which is imprac-
tical when the number of samples grow. Hence, we use a
greedy algorithm that approximates spectral clustering [6].
The algorithm we use is based on sparse similarity values,
and the complexity of constructing the similarity matrix is
O(n2), where n is the number of training data points (i.e.,
papers). The complexity for spectral clustering is

(O(m3) +O(mn) +O(nt))×O(m− k), (5)

where m is the Arnoldi length in using the eigensolver, n is
the number of data points, t is the number of desired nearest-
neighbors in the algorithm (t << n), and k is the number of
desired clusters [6]. m is often set to be several times larger
than k [6]. The importance of training complexity further
diminishes due to the fact that clustering is done once, and
the constructed model is used for many times.

For testing, assigning a paper to a cluster is O(kw), where
w is the window size used to compare papers. Using the
MATLAB implementation of [6] that runs on commercially-
available hardware, training of 2, 000 samples can be per-
formed in around 1 second. Similarly, testing can also be
performed in real-time.

The next section is devoted to experiments that we per-
formed to evaluate the performance of our proposed frame-
work.

4. EXPERIMENTS
In this section, we first present a comparison of our method

to the state of the art in various datasets. We then elaborate
on our method by presenting sensitity analyses. Throughout
the experiments, we used root-mean squared error (RMSE),
the coefficient of determination (R2), and correlation (r)
as error metrics, depending on the work that we compare
our results with. The reported results are averaged over 10
runs(i.e., k-fold cross validation with k=10 ).

4.1 Datasets
Throughout the experiments, we used three datasets. The

first dataset is Arxiv HEP-TH (high energy physics the-
ory) dataset [8, 11], which contains citation information for
27, 700 papers that were published between 1992 and 2003,
with all papers belonging to high energy physics theory. The
second dataset we use is ArnetMiner dataset [22], which con-
tains 1,511,035 papers and 2,084,019 citation relationships.
Lastly, we used CiteSeerX [1] dataset which consists of over
2 million papers and 40 million citations. ArnetMiner and
CiteSeerX datasets are used for comparison with the state of
the art, while Arxiv is used to perform a detailed evaluation
of our method, since it has less amount of missing values.

4.2 Comparison with the State of the Art
We compared our method to the two most recent works as

representative studies [21] [5] of the state of the art from the
literature. The first comparison was performed against [24]
on ArnetMiner dataset [22]. In the experiments section of
[24], the results were reported on various regression methods
such as linear regression, regression trees, and SVR for t = 1,
t = 5, and t = 10 years, where t is the time for which the
number of citations is predicted. For the sake of brevity,
we used the best result for each t. We used the citation
information for first three years after the publication.

The error metric used by [24] is the coefficient of determi-
nation (R2), which is defined as follows:
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Figure 4: RMSE error vs number of clusters

R2 = 1−

∑
i

(yi − fi)2∑
i

(yi − y)2
, (6)

where y is the mean of the observed data (actual number
citations at time t), yi is each observed value and fi is the
each predicted value.

Table 2 indicates that our method outperforms the method
used in [24], for t = 1, t = 5, and t = 10. The proportional
difference between two methods is more apparent with t = 1
and t = 10, compared to t = 5. In order to show the positive
effect of clustering, the results for regression where clustering
is not performed are included as baseline. For the clustered
case, the number of clusters is 7 and polynomial degree is 3.
Window size is determined to be 2 years.

Best result in [24] Ours Baseline
1 year 0.683 0.784 -9.9
5 years 0.752 0.800 -1.028
10 years 0.786 0.842 0.66

Table 2: R2 comparison between our method and [24].

The second set of comparison were performed on Cite-
SeerX dataset against the results of [5]. They used the cor-
relation coefficient r between the predicted and observed
values as the error metric, where r is defined as follows:

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2

, (7)

where x is the predicted citations and y is the actual cita-
tions.

The comparison of results is presented in Table 3. Note
that their method used the month data, in addition to the
year data(which is not available in CiteSeer dataset) and
predicted the number of citations for 4.5 years. Since month
data is not available to our method for CiteSeer dataset, we
provide comparison of results up to 4 years. Similar to Ar-
netMiner dataset, the number of clusters is 7 and polynomial
degree is 3.

Figure 5: RMSE error vs window size used for classification

Table 3 indicates that our method outperforms [5] when
the used window is up-to two years, while both methods
provide similar performance when the length of the used
window converges to the predicted window.

Used Window [5] Ours
1 year 0.76 0.95
2 years 0.92 0.96
3 years 0.97 0.96
4 years 0.99 0.97

Table 3: Correlation coefficient (r) comparison between our
method and [5].

In the next subsections, we present the sensitivity analy-
ses. The following results were obtained from experiments
performed over Arxiv HEP-TH dataset.

4.3 Effect of Behavioral Clustering and Num-
ber of Clusters

The first study was performed to see the effect of clus-
tering (if any), and how the number of clusters affects the
accuracy of predictions. We first evaluated a non-clustered
prediction, which we considered as baseline, and then in-
creased the number of clusters gradually. The results of this
study can be seen in Figure 4. Note that introducing cluster-
ing significantly decreases the prediction error, which shows
the effectiveness of clustering. The baseline predictor, which
does not use clustering, results in an RMSE error of 28.889,
while the predictor with 6 clusters results in 12.365. How-
ever, it can be seen that increasing the number of clusters
results in overfitting after some point, which increases the
prediction error.

4.4 Changing Window Size
The second experiment was performed on the window size

that we use to predict a paper’s citation behavior. The win-
dow size is of great importance since using a very large win-
dow size would make the scheme impractical, requiring the
citation records over long years, in which case, the citations
of a paper is already stabilized. On the other hand, using a
very small window size would be noise-prone, since it takes

496



variable amount of time for papers to get their first citations.
Figure 5 shows the average RMSE error for varying window
sizes.

Looking at Figure 5, it can be seen that the error con-
stantly decreases until a window size of 42 months, after
which increasing the window size does not make any sig-
nificant contribution. Taking the necessities of today’s aca-
demic world into consideration, we concluded that a window
size of 24 months is suitable(which is what we use in our ex-
periments), since having a long window size will decrease the
usefulness of the scheme, especially in fields like computer
science.

4.5 Citation Lifetime
Another goal of our study is to identify a point for which

the number of citations stabilize. This makes it possible
to determine prediction interval which limits the range of
prediction. In this experiment, we trained our model by
using the citation records of 10 years. The prediction was
also performed over a 10 years interval. Figures 6a and 6b
show two of the three models that are observed in long term.
The model that is not shown in the above figure corresponds
to the papers that got no citations in the whole timespan.
The first model, which is shown in Figure 6a, corresponds to
papers that stabilize after some time. These papers possibly
lost their connection with the state-of-the-art, hence they
are less cited or no more cited at all. Obviously, this needs
to be verified based on data, which is part of our future
work. On the other hand, model in Figure 6b corresponds
to the papers that sustain a steady growth in terms of the
number of citations. These papers are more likely to be
seminal papers, i.e., papers that preserve their popularity
even after years. The plots presented above show that these
two types can be easily discriminated by using the data of 10
years, which allows for the possibility of long-term citation
prediction. However, our analysis on this topic is limited
due to constraints introduced by the dataset, which covers
citation data from only 11 years, hence making a long-term
analysis impossible. Using different datasets that cover a
longer timespan for further analysis is part of our future
work.

4.6 Error over Time
An other experiment was performed to see how prediction

error changes over time. Figure 7 shows the prediction error
over time.

Looking at Figure 7, it can be seen that the prediction
error increases as the predicted interval becomes larger up
until 40 months. After that point, the prediction error de-
clines. This is possibly caused by degree of the regression.
A quick solution to decrease error might be to increase the
order of polynomial. However, we noticed that increasing
the degree of polynomial results in higher prediction error,
since a polynomial of higher degree is more likely to overfit.

5. CONCLUSIONS AND FUTURE WORK
We proposed an academic impact prediction framework

based on the first years’ citations and topological position
of a paper. Our model uses time series approach to pre-
dict the number of citations, which is successfully employed
before. Additionally, our model makes use of the citation
behavior, i.e., the pattern in the increase of the number of
citations. In the training phase, the papers are clustered

Figure 7: RMSE over time

according to citation behaviors. Then, when a new paper
arrives, it is assigned to a cluster and the prediction is per-
formed accordingly. We also employ topological features of
the paper, such as various centrality measures, to increase
the prediction performance. Using topological features were
also used before, however, we use them as a contributor to
the prediction task, rather than using them as the main fea-
tures. The experimental evaluation shows the high accuracy
and robustness of our framework. Also, several parameter
sweeps are performed to see the effect of parameters.

As part of future work, we are planning to include contex-
tual features described in the related work section to further
improve our prediction framework. Also, we are planning to
use a better weighing method for employing topological fea-
tures to decrease prediction error. Finally, we plan to extend
our prediction interval and prediction context further by us-
ing datasets that span a longer amount of time and a variety
of disciplines.
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